7 research outputs found

    Additive Manufacturing for the Rapid Prototyping of Economical Biosensors

    Get PDF
    Current methods of developing wearable electronics through reductive manufacturing pose a substantial ecological footprint. To address this issue, it is imperative to investigate alternative additive manufacturing techniques. Aerosol jet printing (AJP) is a promising approach that relies on the optimization of gas flow rates and ink rheology to produce high-resolution printed structures. Implementing a low-intensity layered delamination approach to synthesize titanium carbide MXene, and further produce MXene ink, reduces environmental impact while enhancing the device performance. MXene ink yields desirable rheology, including viscosity, surface tension, density, and contact angles compatible with AJP technique. In terms of cost, ecological effect, time, and process development, traditional manufacturing exacerbates the level of e-waste produced. However, this additive manufacturing technique offers a unique solution for rapidly prototyping and manufacturing economical biosensors while minimizing resource consumption, reducing environmental impact, and addressing the growing issue of e-waste

    Developing an accurate empirical correlation for predicting anti-cancer drugs’ dissolution in supercritical carbon dioxide

    Get PDF
    This study introduces a universal correlation based on the modified version of the Arrhenius equation to estimate the solubility of anti-cancer drugs in supercritical carbon dioxide (CO2). A combination of an Arrhenius-shape term and a departure function was proposed to estimate the solubility of anti-cancer drugs in supercritical CO2. This modified Arrhenius correlation predicts the solubility of anti-cancer drugs in supercritical CO2 from pressure, temperature, and carbon dioxide density. The pre-exponential of the Arrhenius linearly relates to the temperature and carbon dioxide density, and its exponential term is an inverse function of pressure. Moreover, the departure function linearly correlates with the natural logarithm of the ratio of carbon dioxide density to the temperature. The reliability of the proposed correlation is validated using all literature data for solubility of anti-cancer drugs in supercritical CO2. Furthermore, the predictive performance of the modified Arrhenius correlation is compared with ten available empirical correlations in the literature. Our developed correlation presents the absolute average relative deviation (AARD) of 9.54% for predicting 316 experimental measurements. On the other hand, the most accurate correlation in the literature presents the AARD = 14.90% over the same database. Indeed, 56.2% accuracy improvement in the solubility prediction of the anti-cancer drugs in supercritical CO2 is the primary outcome of the current study

    Markovnikov hydroformylation catalyzed by ROPAC in the presence of phosphine and phosphine oxide ligands

    No full text
    <div><p>Rhodium catalyzed hydroformylation of 1-octene in the presence of different phosphine and phosphine oxide ligands has been investigated. The molecular structure of new phosphine ligand, fluorenylidine methyl phenyl diphenylphosphine was determined by single-crystal X-ray crystallography. Parameters such as different ligands, molar ratio of ligand to rhodium complex, ratio of olefin to rhodium complex, pressure of CO:H<sub>2</sub> mixture and time of the reaction were studied. The linear aldehyde was the main product when the phosphine ligands were used as auxiliary ligands while the selectivity was changed to the branched products when the related phosphine oxide ligands were used. Under optimized reaction conditions, in the presence of [Rh(acac)(CO)(Ph<sub>3</sub>P)]-di(1-naphthyl)phenyl phosphine oxide, conversion of 1-octene reached 97% with 87% selectivity of branched aldehyde.</p></div

    Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems

    Get PDF
    This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy

    Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems

    No full text
    This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal&ndash;organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy

    Printable Bioscaffolds Using MXenes for Musculoskeletal Tissue Engineering

    No full text
    Musculoskeletal disease is the number one cause of physical disability in the world. A potential cure for this is tissue engineering; specifically, culturing STEM cells into scaffolds to create tissue specific grafts to be surgically implanted. We successfully printed bioscaffolds with high structural integrity and sufficient conductivity to aid in the functionality of the muscle cells by using cell-laden bioinks with Ti3C2 MXene nanoparticles. Furthermore, we tested GelMA, GelXA, and Cellink bioinks at a seeding density of 1x106 cells/mL with 0, 0.1, and 1.0 mg/mL MXene concentrations. UV Crosslinking of GelMA and GelXA was determined to be less functional with higher concentrations of MXenes due to light deflection. Additionally, chemical crosslinking in GelXA and Cellink led to better structural integrity. Overall, MXenes improved the mechanical and electrical properties of the scaffold while maintaining cell viability
    corecore